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ABSTRACT

VIots are presented, of the radiation eciency and input impedance of a thin quarter-

wave monopole element with a radialIire ground plane in proximity to flat lossy earth, as a

function of the number and length of the radial wires, earth permittivity, and location of the

earth's surface with respect to the ground plane. Numerical results are from the method-of .
moments NEC-GS progam developed by Lawrence Livermore National Laboratory.
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SECTION 1

RADIATION EFFICIENCY AND INPUT IMPEDANCE OF

MONOPOLE ELEMENTS WITH RADIAL-WIRE GROUND PLANES

IN PROXIMITY TO EARTH

The modeling, of monopole elements with circular ground planes in proximity to earth,

has been greatly enhanced in recent years by the development of Richmond's method-of-

moments programs RICHMD3 [11 and RICHMD4 [2] for disk ground planes and Lawrence

Livermore National Laboratory's method-of-moments programs NEC-3 [3], [4], [5] and

NEC-GS [6], [71 for radial-wire ground, lanes.

N _, The methodlof-xhoments models have certain advantages over models based on

Monteath's compensation theorem [8], [9] or Sommerfeld's attenuation function [1p]. These

advantages are: ('1J) current on the ground plane is determined rather than approximated by

that for a perfect ground plane; (2)results are valid not only for moderately-large ground

planes but for electrically-small ground planes; (>directive gain and radiation eficiency can

each be determined separately rather than being lumped together as a product to yield the

antenna power gain; (4),ground plane edge diffraction is not neglected; and (5> analytical

conditions on evaluating Sommerfeld's integral (such as requiring an earth relative

permittivity JE*/E 0 >> l)Wre avoided./,

Numerical results, based on method-of-moments models, have been published for disk

ground planes [1], [2] and for radial-wire ground planes [11]. A detailed discussion of the

properties of antennas with electrically-small ground planes in proximity to earth has recently

been reported [ 12].

This paper presents additional results for input impedance and new results for radiation

efficiency for a thin quarter-wave monopole element with a radial-wire ground plane in

proximity to earth.
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The numerical data for the plots were supplied by G. J. Burke, of the Lawrence

Livermore National Laboratory, using his method-of-moments Numerical Electromagnetics

Code NEC-GS. The NEC-GS program is an optimization for radial-wire ground planes of

the NEC-3 program for wire elements in proximity to earth. The NEC-GS program utilizes

the rotational symmetry in the azimuthal direction, of the antenna element and its ground

plane, to achieve program optimization. Validation of the NEC-GS program is discussed in

Ref. [13].

The antenna geometry consists of a monopole element, of length h and radius b, on a

groundscreen consisting of N equally-spaced radial wires, of length a and radius bw, at a

depth z. below a flit earth surface (see figure 1'. The earth, with a dielectric constant er. and

conductivity a (S/m) at a radian frequency a) (rad/s) and free-space wavelength X(m), has a

complex relative permittivity £*Io = e,- - jx where x = loss tangent = a/c.o
= (X.o/27t) (lo/F0 ) 1/'2 = 60 X a. The monopole element and radial wires are assumed to have

infinite conductivity. The earth constants, loss tangents, and penetration depths, for CCIR

527-1 characteristic, of earth in the HF frequency band 3-30 MHz, are summarized in

table 1.

Numerical results are presented for parameters with fixed values h/X = 0.25, ba = 10-5 ,

bw/X = 10-5 , Fr. = 15 and variable values Zo/X = 10-4 , -10-4 , -10-2, x = 1.5, 15, 150, 1500;

21ra/A = 0 through 3.8, and N = 4, 8, 16, 32, 64, 128.

The radiation efficiency, input resistance, and input reactance are plotted in figures 2

through 13, 14 through 25, and 26 through 37, respectively. The notation for the number of

radial wires is identical in figures 2 through 37. Numerical results of the absolute directive

gain patterns were not obtained by G. Burke because, for electrically-small ground planes

resting on earth, the absolute directive gain is not appreciably different from that of a

vertically-polarized Hertzian dipole (with no ground plane) at zero height above earth.

Weiner [21 has shown that the absolute directive gain pattern, for quarter-wave elements on

disk ground planes resting on earth, varies by less than 1 dBi as the normalized ground plane

radius is varied from 0 to 8 wavenumbers.
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The radiation effeciency 1 is the ratio of the far-field radiated power to the available

input power. The far-field radiated power is confined to the air medium for an earth
conductivity c; > 0. The radiation efficiency is a measure of the power loss in the earth

because the monopole element and radial wires are assumed to have infinite conductivity.

The radiation efficiency increases monotonically with increasing number of the radial wires

(see figures 2 through 13) and with increasing length of the monopole element (not shown).

The radiation efficiency exhibits resonances with increasing wire length for a sparse number

of radial w'ires (see figures 2 through 13).

The input resistance and input reactance asymptotically approach the values for a disk

ground plane as the groundscreen density approaches infinity (i.e., as the number of radial
wires N ->-o as shown in figures 14 through 37). A unique characteristic of radial-wire

ground planes is the resonances in input impedance and radiation efficiency that occur for a

sparse number of radial wires provided that the earth is not of high conductivity (see figures

14, 18, 22 26, 30, 34). These resonances occur apparently because the currents on the wires

are not closely coupled, unlike the case for a high density of radial wires or the case of a diskO ground plane. A more detailed discussion of the electrical characteristics of antennas with

electrically-small ground planes in proximity to earth is given in Ref. [12].
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